John Chandy, Ph.D.
Professor, School of Engineering
- Storrs CT UNITED STATES
Professor focused on cybersecurity, computer hacking, Internet of Things, systems engineering, and computer hardware security.
Contact More Open optionsBiography
Dr. John Chandy is a Professor and Associate Head at the School of Engineering. Dr. Chandy's research is focused on clustered network storage and distributed file systems, parallel algorithms and distributed system architectures, reconfigurable computing, and hardware security.
Areas of Expertise
Education
University of Illinois
Ph.D.
Electrical Engineering
1996University of Illinois
M.S.
Electrical Engineering
1993Massachusetts Institute of Technology
B.S.
Electrical Engineering
1989Affiliations
- Institute of Electrical and Electronics Engineers, Member
- Association for Computing Machinery, Member
- USENIX, Member
Links
Social
Media
Media Appearances
New UConn robotics program aims to help build manufacturing workforce of the future, spur new startups
Hartford Business Journal online
2021-08-09
UConn is one of only two U.S. research-active universities to offer a robotics major. While the school has a history of robotics research among engineering faculty, which has transferred to companies or fueled startups, Chandy says one of the goals is to get new robotics majors thinking about business opportunities. “Even at the freshman level, we need to change the mindset,” Chandy said. “Many [engineering] students come in thinking about [getting] a stable job at a big company [after graduation], but we want them to think about entrepreneurship as an option.”
Articles
Multi-Bit NVRAMs Using Quantum Dot Gate Access Channel
International Journal of High Speed Electronics and SystemsMurali Lingalugari, Pik-Yiu Chan, John Chandy, Evan Heller, Faquir Jain
2017 This paper presents a quantum dot access channel nonvolatile random access memory (QDAC-NVRAM) which has comparable write and erase times to conventional random access memories but consumes less power and has a smaller footprint. We have fabricated long-channel (W/L= 15μm/10μm) nonvolatile random access memories (NVRAMs) with 4μs erase times.
Spatial Wavefunction Switched (SWS) FET SRAM Circuits and Simulation
International Journal of High Speed Electronics and SystemsBander Saman, P Gogna, El-Sayed Hasaneen, J Chandy, E Heller, FC Jain
2017 This paper presents the design and simulation of static random access memory (SRAM) using two channel spatial wavefunction switched field-effect transistor (SWS-FET), also known as a twin-drain metal oxide semiconductor field effect transistor (MOS-FET). In the SWS-FET, the channel between source and drain has two quantum well layers separated by a high band gap material between them. The gate voltage controls the charge carrier concentration in the quantum well layers and it causes the switching of charge carriers from one channel to other channel of the device.
Algebraic Side-Channel Attack on Twofish
Journal of Internet Services and Information SecurityChujiao Ma, John Chandy, Zhijie Shi
2017 While algebraic side-channel attack (ASCA) has been successful in breaking simple cryptographic algorithms, it has never been done on larger or more complex algorithms such as Twofish. Compared to other algorithms that ASCA has been used on, Twofish is more difficult to attack due to the key-dependent S-boxes as well as the complex key scheduling.
DRAM-Based Intrinsic Physically Unclonable Functions for System-Level Security and Authentication
IEEE Transactions on Very Large Scale Integration (VLSI) SystemsFatemeh Tehranipoor, Nima Karimian, Wei Yan, John A Chandy
2017 A physically unclonable function (PUF) is an irreversible probabilistic function that produces a random bit string. It is simple to implement but hard to predict and emulate. PUFs have been widely proposed as security primitives to provide device identification and authentication. In this paper, we propose a novel dynamic-memory-based PUF [dynamic RAM PUF (DRAM PUF)] for the authentication of electronic hardware systems.
PUF-based Fuzzy Authentication without Error Correcting Codes
IEEE Transactions on Computer-Aided Design of Integrated Circuits and SystemsWei Yan, Fatemeh Tehranipoor, John A Chandy
2016 Counterfeit Integrated Circuits (IC) can be very harmful to the security and reliability of critical applications. Physical Unclonable Functions (PUF) have been proposed as a mechanism for uniquely identifying ICs and thus reducing the prevalence of counterfeits. However, maintaining large databases of PUF challenge response pairs (CRPs) and dealing with PUF errors make it difficult to use PUFs reliably. This paper presents an innovative approach to authenticate CRPs on PUF-based ICs.