Isaac L. Moss, M.D., C.M., M.A.Sc., FRCSC
Chair, Department of Orthopaedic Surgery
- Farmington CT UNITED STATES
Dr. Moss’ clinical focus is on the treatment of all disorders of the neck and back.
Contact More Open optionsBiography
Dr. Isaac Moss is a fellowship-trained spine surgeon and assistant professor in the Department of Orthopedic Surgery and the Comprehensive Spine Center at the UConn Musculoskeletal Institute. Dr. Moss completed residency training in the renowned University of Toronto orthopedic program, where he was awarded the Lawson Family Post Graduate Fellowship as the department’s top graduate. After completion of his residency, Dr. Moss received specialized training in advanced spinal and scoliosis surgery at Rush University Medical Center in Chicago, where he developed expertise in treating a variety of complex spinal disorders under the guidance of internationally recognized surgeons.
Dr. Moss’ clinical focus is on the treatment of all disorders of the neck and back. He has specific interest in conditions related to both spinal degeneration and deformity. He has extensive experience in minimally invasive surgery (MIS) solutions to many spinal ailments.
Dr. Moss has a master’s degree in biomedical engineering. He has been recognized with several awards and scholarships for his involvement in cutting-edge research to develop novel biologic therapies for intervertebral disc degeneration. He is a member of the North American Spine Society and the Orthopedic Research Society.
Areas of Expertise
Education
McGill University
MDCM
Medicine
Links
Social
Media
Media Appearances
‘X-ray vison’ allows a CT surgeon to see the spine through the patient’s back. Here’s how he does it.
Hartford Courant print
2023-02-13
Dr. Isaac Moss, an orthopedic surgeon at UConn Health, can see his patient’s spinal column during surgery without cutting the back open or even having to look at a two-dimensional X-ray on a screen. Instead, he wears a headset that projects the interior anatomy in front of his eyes like a kind of three-dimensional X-ray vision. It’s called augmented reality. Because there are trackers on the spinal column that match CT scans taken of the spine, Moss sees exactly what is beneath the skin, even if the patient moves slightly during surgery.
UConn Health squares away CMS audit trail and more with digital health platform
Healthcare IT News online
2023-10-12
"In addition, we were seeking a solution to facilitate standardizing our evidence-based care pathways across our health system, while incorporating flexible, virtual options for our patients for education, physical therapy, care team communication and more," said Dr. Isaac L. Moss, chair of the department of orthopedic surgery, co-director of the comprehensive spine center, and program director of the UConn Spine Surgery Fellowship, at UConn Health.
UConn Health announces first augmented reality spine surgery in region
Hartford Business Journal online
2022-08-02
The University of Connecticut Health announced that one of its orthopedic surgeons performed central Connecticut’s first “augmented reality” spine surgery. The technology expands the range of spine surgeries that can be done using a minimally invasive approach. The surgery was performed recently by Dr. Isaac Moss, chair of UConn Health’s Department of Orthopedic Surgery and co-director of its Comprehensive Spine Center.
Articles
Early Clinical Outcomes of the Prone Transpsoas Lumbar Interbody Fusion Technique
International Journal of Spine Surgery2023 Background: The prone transpsoas (PTP) approach for lateral lumbar interbody fusion (LLIF) is a relatively novel technique. Currently, little is known about its associated complications and early patient-reported outcomes. The aim of this study was to investigate the effect of LLIF performed via the PTP approach on sagittal radiographic parameters, patient-reported outcome measures (PROMs), and rates of complications. Methods: A retrospective review was performed of 82 consecutive patients who underwent LLIF via a PTP technique. Lumbar lordosis (LL), segmental lordosis (SL), anterior disc height (ADH), and posterior disc height (PDH) were measured on preoperative, initial postoperative, and 3-month postoperative radiographs. PROMs including the Oswestry Disability Index (ODI); the visual analog scale (VAS); and pain portions of the EQ5D, VAS back, and VAS leg ratings were collected at the preoperative and subsequent postoperative visits. Length of hospital stay and postoperative complications related to the procedure were recorded.
Modifiable Patient Factors Demonstrate No Increased Risk for 30-Day Complication Rate for Elective 1-2 Level Posterior Lumbar Fusion Surgery: A Comparison Between a National Database and [...]
International Journal of Spine Surgery2022 Background: While national databases provide large datasets that can be used to understand trends over time, their correlation with prospectively collected data from local registries has not been established. The purpose of the study was to compare differences in patient demographics and adverse events for patients undergoing elective posterior spinal fusion (PSF) between a national database and institutional registry. Methods: A retrospective chart review was performed. A total of 14,618 patients (13,678 patients from the National Surgical Quality Improvement Program [NSQIP] database and 940 patients from the institutional registry) who underwent elective 1- to 2-level PSF were included in the study. Preoperative patient demographics and comorbidities of each cohort were compared. In addition, postoperative 30-day complications and readmission were collected. A multivariate analysis was performed to examine for differences in risk factors for 30-day adverse events between the 2 cohorts.
Determination of a neurologic safe zone for bicortical S1 pedicle screw placement
The Spine Journal2022 Background context: Lumbosacral fixation is commonly used for the management of lumbosacral instability. As the sacrum mainly consists of cancellous bone, bicortical fixation, in which the pedicle screw penetrates the anterior sacral cortex, can help increase the strength of fixation. However, this method carries a risk to the L5 nerves which lie anterior to the sacrum at this level. Purpose: The goal of this study is to determine a safe zone for the placement of S1 pedicle screws to decrease the likelihood of L5 nerve injury. Study design: Retrospective imaging review. Patient sample: This study evaluated imaging data of patients who underwent lumbar spine magnetic resonance imaging (MRI) at our institute between September 1, 2020 and September 1, 2021.
Editors' Introduction: Advances in the Evolution of the Lateral Approach to the Thoracolumbar Spine
International Journal of Spine Surgery2022 The science and practice of interbody fusion surgery has evolved tremendously since it was first reported in the literature in 1953.1 Initial innovation was aimed at the development of interbody fusion devices delivered through traditional open approaches. At the turn of the millennium, spinal instrumentation continued to advance; however, the field also began to see significant innovation in how the spine is accessed, with a focus on the development of minimally invasive techniques for a wide range of procedures. Among these new approaches was the development of the minimally invasive lateral lumbar interbody fusion, with its first published description by Ozgur et al in 2006.2 Since then, the concept of accessing the spine through a lateral corridor with minimal disruption to surrounding tissues has evolved from a fringe procedure performed by a relatively small number of practitioners to a mainstay of lumbar fusion surgery adopted by more than 20% of spinal surgeons.
Notch signaling enhances bone regeneration in the zebrafish mandible
Development2022 Loss or damage to the mandible caused by trauma, treatment of oral malignancies, and other diseases is treated using bone-grafting techniques that suffer from numerous shortcomings and contraindications. Zebrafish naturally heal large injuries to mandibular bone, offering an opportunity to understand how to boost intrinsic healing potential. Using a novel her6:mCherry Notch reporter, we show that canonical Notch signaling is induced during the initial stages of cartilage callus formation in both mesenchymal cells and chondrocytes following surgical mandibulectomy. We also show that modulation of Notch signaling during the initial post-operative period results in lasting changes to regenerate bone quantity one month later. Pharmacological inhibition of Notch signaling reduces the size of the cartilage callus and delays its conversion into bone, resulting in non-union. Conversely, conditional transgenic activation of Notch signaling accelerates conversion of the cartilage callus into bone, improving bone healing.