A Cyborg Cockroach Could Someday Save Your Life

In a paper soon to be published in Proceedings of the Conference on Cognitive Computational Neuroscience, Philadelphia 2018, Dutta, and undergraduate Evan Faulkner, a junior working in his lab, report their creation of a microcircuit that they say allows more reliable and precise control of robotic insect motion.

A cockroach with an implanted neurocontroller. (Image courtesy of the Dutta Lab)

 

By: Colin Poitras, UConn Communications 

A cockroach no bigger than a large paper clip scurries across the floor of Abhishek Dutta’s lab at the University of Connecticut.

Some scientists might be shocked to see such a notorious visitor occupying their research space.

But not Dutta. He watches intently as the roach moves left, and then right, then left again, as it traverses the cool tile floor. His interest is well-founded, for he is the one initiating the tiny creature’s movements with a small handheld device about 15 feet away.

The Madagascar hissing cockroach in this lab is not just any old member of the order Blattodea. It is a robot-roach hybrid, a hardwired biological insect  a cyborg if you will  and its future high-tech brethren may one day save your life.

“The use of insects as platforms for small robots has an incredible number of useful applications, from search and rescue to national defense,” says Dutta, an assistant professor of electrical and computer engineering who specializes in control system optimization and cyber-physical systems.

Cockroach robots aren’t new, however. Researchers have been exploring biorobotic platforms for insects for the better part of the past decade. But building robotic systems at such miniature scale isn’t easy, and the technology seems to work only about half the time.

In a paper soon to be published in Proceedings of the Conference on Cognitive Computational Neuroscience, Philadelphia 2018, Dutta, and undergraduate Evan Faulkner, a junior working in his lab, report their creation of a microcircuit that they say allows more reliable and precise control of robotic insect motion.

Read more on UConn Today